Extending the idea of definite integral

- 1. (a) Evaluate $\int_{1}^{b} \frac{1}{x^2} dx$ for b > 1.
 - (b) Sketch a plot illustrating an area interpretation of your result from (a).
 - (c) Evaluate the limit of your result from (a) as $b \to \infty$.
 - (d) Sketch a plot illustrating an area interpretation of your result in (c).

2. (a) Evaluate
$$\int_{1}^{b} \frac{1}{x} dx$$
 for $b > 1$.

(b) Sketch a plot illustrating an area interpretation of your result from (a).

- (c) Evaluate the limit of your result from (a) as $b \to \infty$.
- (d) Sketch a plot illustrating an area interpretation of your result in (c).
- 3. (a) Set up an inequality comparing x^2 and $x^2 + 1$ for x > 1.
 - (b) Set up an inequality comparing $\frac{1}{x^2}$ and $\frac{1}{x^2+1}$ for x > 1.
 - (c) Set up an inequality comparing $\int_1^b \frac{1}{x^2} dx$ and $\int_1^b \frac{1}{x^2+1} dx$.
 - (d) Use your inequality from (c) and your result from Problem 1(c) to reach a conclusion about $\lim_{b\to\infty} \int_1^b \frac{1}{x^2+1} dx$. (Note: This conclusion will be in the form of an upper bound on the value of the limit rather than the exact value of the limit.)
 - (e) Sketch a plot illustrating an area interpretation of your result in (d).
- 4. (a) Set up an inequality comparing x and \sqrt{x} for x > 1.
 - (b) Set up an inequality comparing $\frac{1}{x}$ and $\frac{1}{\sqrt{x}}$ for x > 1.
 - (c) Set up an inequality comparing $\int_1^b \frac{1}{x} dx$ and $\int_1^b \frac{1}{\sqrt{x}} dx$.
 - (d) Use your inequality from (c) and your result from Problem 2(c) to reach a conclusion about $\lim_{b\to\infty} \int_1^b \frac{1}{\sqrt{x}} dx$.
 - (e) Sketch a plot illustrating an area interpretation of your result in (d).